Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.135
Filtrar
1.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641822

RESUMO

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , RNA Polimerase II/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Splicing de RNA , Cromatina , Fatores de Processamento de RNA/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
2.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577979

RESUMO

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Assuntos
Precursores de RNA , Transcrição Gênica , Animais , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA , Íntrons/genética , Mamíferos/genética
3.
Nat Commun ; 15(1): 2809, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561334

RESUMO

Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.


Assuntos
Processamento Alternativo , RNA , Animais , Humanos , Camundongos , Arginina/metabolismo , Camundongos Knockout , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38605640

RESUMO

Language models pretrained by self-supervised learning (SSL) have been widely utilized to study protein sequences, while few models were developed for genomic sequences and were limited to single species. Due to the lack of genomes from different species, these models cannot effectively leverage evolutionary information. In this study, we have developed SpliceBERT, a language model pretrained on primary ribonucleic acids (RNA) sequences from 72 vertebrates by masked language modeling, and applied it to sequence-based modeling of RNA splicing. Pretraining SpliceBERT on diverse species enables effective identification of evolutionarily conserved elements. Meanwhile, the learned hidden states and attention weights can characterize the biological properties of splice sites. As a result, SpliceBERT was shown effective on several downstream tasks: zero-shot prediction of variant effects on splicing, prediction of branchpoints in humans, and cross-species prediction of splice sites. Our study highlighted the importance of pretraining genomic language models on a diverse range of species and suggested that SSL is a promising approach to enhance our understanding of the regulatory logic underlying genomic sequences.


Assuntos
Splicing de RNA , Vertebrados , Animais , Humanos , Sequência de Bases , Vertebrados/genética , RNA , Aprendizado de Máquina Supervisionado
5.
Hematology ; 29(1): 2343163, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38655690

RESUMO

BACKGROUND: Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by SEC23B gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis. METHODS: We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing. RESULTS: Molecular analysis revealed a maternally inherited novel intronic variant and a paternally inherited missense variant, c.[994-3C > T];[1831C > T] in the SEC23B gene, confirming diagnosis of CDA Ⅱ. cDNA analysis verified that the splice acceptor site variant results in two mutant transcripts, one with an exon 9 skip and one in which exons 9 and 10 are deleted. SEC23B mRNA levels in the patient were lower than those in healthy controls. The patient was also homozygous for the UGT1A1*6 allele, consistent with GS. CONCLUSION: Identification of the novel splice variant in this study further expands the spectrum of known SEC23B gene mutations. Molecular genetic approaches can lead to accurate diagnosis and management of CDA Ⅱ patients, particularly for those with GS coexisting.


Assuntos
Anemia Diseritropoética Congênita , Doença de Gilbert , Proteínas de Transporte Vesicular , Humanos , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/diagnóstico , Masculino , Proteínas de Transporte Vesicular/genética , Doença de Gilbert/genética , Doença de Gilbert/complicações , Doença de Gilbert/diagnóstico , Splicing de RNA , Mutação
6.
Wiley Interdiscip Rev RNA ; 15(2): e1843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576117

RESUMO

RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Dor/genética
7.
Mol Biol Rep ; 51(1): 498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598037

RESUMO

BACKGROUND: Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS: In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS: The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS: In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.


Assuntos
Cútis Laxa , Humanos , Recém-Nascido , Feminino , Gravidez , Masculino , Cútis Laxa/genética , Pele , Splicing de RNA/genética , Povo Asiático/genética , China , ATPases Translocadoras de Prótons
8.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579148

RESUMO

Two well-known facets in protein synthesis in eukaryotic cells are transcription of DNA to pre-RNA in the nucleus and the translation of messenger-RNA (mRNA) to proteins in the cytoplasm. A critical intermediate step is the removal of segments (introns) containing ∼97% of the nucleic-acid sites in pre-RNA and sequential alignment of the retained segments (exons) to form mRNA through a process referred to as splicing. Alternative forms of splicing enrich the proteome while abnormal splicing can enhance the likelihood of a cell developing cancer or other diseases. Mechanisms for splicing and origins of splicing errors are only partially deciphered. Our goal is to determine if rules on splicing can be inferred from data analytics on nucleic-acid sequences. Toward that end, we represent a nucleic-acid site as a point in a plane defined in terms of the anterior and posterior sub-sequences of the site. The "point-set" representation expands analytical approaches, including the use of statistical tools, to characterize genome sequences. It is found that point-sets for exons and introns are visually different, and that the differences can be quantified using a family of generalized moments. We design a machine-learning algorithm that can recognize individual exons or introns with 91% accuracy. Point-set distributions and generalized moments are found to differ between organisms.


Assuntos
Splicing de RNA , RNA , Íntrons/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Éxons/genética
9.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinite Pigmentosa , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Sci Rep ; 14(1): 8096, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582789

RESUMO

Circular RNAs (circRNAs), are a covalently closed, single-stranded RNA without 5'- and 3'-termini, commonly stem from the exons of precursor mRNAs (pre-mRNAs). They have recently garnered interest, with studies uncovering their pivotal roles in regulating various aspects of cell functions and disease progressions. A notable feature of circRNA lies in the mechanism of its biogenesis involving a specialized form of splicing: back-splicing. A splicing process that relies on interactions between introns flanking the circularizing exon to bring the up and downstream splice sites in proximity through the formation of a prerequisite hairpin structure, allowing the spliceosomes to join the two splice sites together to produce a circular RNA molecule. Based on this mechanism, we explored the feasibility of facilitating the formation of such a prerequisite hairpin structure by utilizing a newly designed oligonucleotide, CircuLarIzation Promoting OligoNucleotide (CLIP-ON), to promote the production of circRNA in cells. CLIP-ON was designed to hybridize with and physically bridge two distal sequences in the flanking introns of the circularizing exons. The feasibility of CLIP-ON was confirmed in HeLa cells using a model pre-mRNA, demonstrating the applicability of CLIP-ON as a trans-acting modulator to upregulate the production of circRNAs in a cellular environment.


Assuntos
RNA Circular , RNA , Humanos , RNA Circular/genética , Células HeLa , RNA/genética , RNA/metabolismo , Splicing de RNA/genética , Precursores de RNA/metabolismo
11.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426258

RESUMO

Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.


Assuntos
Splicing de RNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Baixo/genética , Splicing de RNA/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral
12.
Nat Commun ; 15(1): 2164, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461306

RESUMO

RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Splicing de RNA/genética , Processamento Alternativo/genética , Análise de Sequência de RNA/métodos
13.
Prog Mol Biol Transl Sci ; 204: 97-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38458745

RESUMO

ß-thalassemia is an autosomal recessive disease, caused by one or more mutations in the ß-globin gene that reduces or abolishes ß-globin chain synthesis causing an imbalance in the ratio of α- and ß-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of ß-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as ß-thalassemia; Especially, ASO therapeutics can completely treat ß-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of ß-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of ß-globin which increases the amount of mature hemoglobin of red blood cells of ß-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for ß-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of ß-thalassemia patients.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , RNA/metabolismo , RNA Mensageiro/genética , Splicing de RNA/genética , Globinas beta/genética , Globinas beta/metabolismo
14.
BMC Bioinformatics ; 25(1): 91, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429654

RESUMO

BACKGROUND: Uncovering functional genetic variants from an allele-specific perspective is of paramount importance in advancing our understanding of gene regulation and genetic diseases. Recently, various allele-specific events, such as allele-specific gene expression, allele-specific methylation, and allele-specific binding, have been explored on a genome-wide scale due to the development of high-throughput sequencing methods. RNA secondary structure, which plays a crucial role in multiple RNA-associated processes like RNA modification, translation and splicing, has emerged as an essential focus of relevant research. However, tools to identify genetic variants associated with allele-specific RNA secondary structures are still lacking. RESULTS: Here, we develop a computational tool called 'AStruct' that enables us to detect allele-specific RNA secondary structure (ASRS) from RT-stop based structuromic probing data. AStruct shows robust performance in both simulated datasets and public icSHAPE datasets. We reveal that single nucleotide polymorphisms (SNPs) with higher AStruct scores are enriched in coding regions and tend to be functional. These SNPs are highly conservative, have the potential to disrupt sites involved in m6A modification or protein binding, and are frequently associated with disease. CONCLUSIONS: AStruct is a tool dedicated to invoke allele-specific RNA secondary structure events at heterozygous SNPs in RT-stop based structuromic probing data. It utilizes allelic variants, base pairing and RT-stop information under different cell conditions to detect dynamic and functional ASRS. Compared to sequence-based tools, AStruct considers dynamic cell conditions and outperforms in detecting functional variants. AStruct is implemented in JAVA and is freely accessible at: https://github.com/canceromics/AStruct .


Assuntos
Regulação da Expressão Gênica , RNA , RNA/genética , RNA/química , Alelos , Splicing de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
NPJ Syst Biol Appl ; 10(1): 25, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453965

RESUMO

Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Splicing de RNA/genética , Mutação/genética , Processamento Alternativo/genética , RNA Mensageiro/genética , Neoplasias/genética , Simulação por Computador
16.
Elife ; 132024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470242

RESUMO

Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.


Assuntos
Processamento Alternativo , Splicing de RNA , Animais , Deriva Genética , Isoformas de Proteínas , RNA Mensageiro/genética
18.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
19.
Mol Cell ; 84(8): 1496-1511.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537639

RESUMO

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.


Assuntos
Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Animais , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Íntrons/genética , Cromatina/genética , Cromatina/metabolismo , Splicing de RNA , Precursores de RNA/metabolismo , Mamíferos/metabolismo
20.
Nucleic Acids Res ; 52(7): e37, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452210

RESUMO

G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.


Assuntos
Biotina , Quadruplex G , Humanos , Biotina/metabolismo , Ligação Proteica , Fatores de Processamento de RNA/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Splicing de RNA , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Células HeLa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...